A Tensor Network Kalman filter with an application in recursive MIMO Volterra system identification

نویسندگان

  • Kim Batselier
  • Zhongming Chen
  • Ngai Wong
چکیده

This article introduces a Tensor Network Kalman filter, which can estimate state vectors that are exponentially large without ever having to explicitly construct them. The Tensor Network Kalman filter also easily accommodates the case where several different state vectors need to be estimated simultaneously. The key lies in rewriting the standard Kalman equations as tensor equations and then implementing them using Tensor Networks, which effectively transforms the exponential storage cost and computational complexity into a linear one. We showcase the power of the proposed framework through an application in recursive nonlinear system identification of high-order discretetime multiple-input multiple-output (MIMO) Volterra systems. The identification problem is transformed into a linear state estimation problem wherein the state vector contains all Volterra kernel coefficients and is estimated using the Tensor Network Kalman filter. The accuracy and robustness of the scheme are demonstrated via numerical experiments, which show that updating the Kalman filter estimate of a state vector of length 10 and its covariance matrix takes about 0.007s on a standard desktop computer in Matlab.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix output extension of the tensor network Kalman filter with an application in MIMO Volterra system identification

This article extends the tensor network Kalman filter to matrix outputs with an application in recursive identification of discrete-time nonlinear multiple-input-multiple-output (MIMO) Volterra systems. This extension completely supersedes previous work, where only l scalar outputs were considered. The Kalman tensor equations are modified to accommodate for matrix outputs and their implementati...

متن کامل

The Particle Filter and Extended Kalman Filter methods for the structural system identification considering various uncertainties

Structural system identification using recursive methods has been a research direction of increasing interest in recent decades. The two prominent methods, including the Extended Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo (SMC), are advantageous in this field. In this study, the system identification of a shake table test of a 4-story steel struct...

متن کامل

Tensor Network alternating linear scheme for MIMO Volterra system identification

This article introduces two Tensor Train-based iterative algorithms for the identification of high order discrete-time nonlinear MIMO Volterra systems. The system identification problem is rewritten in terms of a Volterra tensor, which is never explicitly constructed, thus avoiding the curse of dimensionality. It is shown how each iteration of the two identification algorithms involves solving ...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

Practical Evaluation of EKF1 and UKF2 Filters for Terrain Aided Navigation

This article would study batch and recursive methods that used in terrain navigation systems. Terrain navigation has a lot ofdisadvantages and so researchers have been studied on different method of aided navigation for many years. Therefore, more types of aided navigation systems were introduced with advantages and disadvantages in terms of practical and theoretical. One of the main ideas for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Automatica

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2017